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In the present study, we focus on the computational analysis of 
partial differential equations with emphasis on the stability of the 
equil ibrium states and on their bifurcations. In practical applications, 
it is not sufficient to obtain an equil ibrium solution at a point in the 
parameter space. The equil ibrium solution branches, their stability 
characteristics, and particularly the critical points of transition from 
one state to another (e.g., bifurcation points), are required for under- 
standing the physics of the problem. In principle, the linear stability 
of an equil ibrium state can be investigated by solving an eigenvalue 
problem, and consequently, the points of bifurcations can be de- 
tected. We review alternative techniques for detecting bifurcation 
points which are direct and numerically efficient and, therefore, 
more practical. Starting with a large dimension dynamical system, 
which represents a projection of a set of coupled partial differential 
equations onto a basis function, we discuss the relative effective- 
ness of the time evolution approach, the test function approach, 
and the direct method. We wil l  then extend the direct method for 
a more practical and efficient implementation. With this technique, 
we compute the sequence of transitions from steady state to chaotic 
f low in a two-dimensional lid-driven cavity of aspect ratio 0.8, 1.0, 
and 1.5. We demonstrate the effectiveness of this technique by 
computing interesting new dynamics in this relatively simple hydro- 
dynamic system. In particular, we show that depending on the as- 
pect ratio, the first transition from steady state could be through a 
supercritical or a subcritical Hopf bifurcation leading the system to 
a t ime periodic state. We construct the destabilizing disturbance 
structure and conclude that the first bifurcation ofthe primary steady 
state is due to the centrifugal instability of the primary eddy. The 
mechanism of transition to chaos is low-dimensional. The transition 
to chaos occurs after a secondary Hopf bifurcation. © 1995 Aca- 
demic Press, Inc. 

1. INTRODUCTION 

their excessive computational demands. Alternative approaches 
for detection and pinpointing of even simple bifurcations need 
to be developed. In this paper, we review some of these alterna- 
tive techniques for analysis of large dynamical systems. We 
then outline a practical technique that can be effectively used 
for direct computation of bifurcations of steady state solutions 
of hydrodynamic flow equations. 

As one of the parameters that control the dynamics of a 
nonlinear system varies, the stability of its steady state may 
typically change via bifurcations of codimension one, such as 
saddle-node, Hopf, or pitchfork bifurcations. Let us consider 
a general system of ordinary differential equations that may 
also describe the dynamics of spatially discretized partial differ- 
ential equations. 

M d X = F ( x ,  tz), F : D  C X × 3t-->X, (I) 
dt 

where x E X and/x is a system parameter. M is usually called 
a mass matrix and F is a system matrix. Then steady state 
solutions xo of system (1) are determined by the equation 

F(xo,/x) = 0 (2) 

and their stability is governed by a linear differential equation 
for disturbances x~ -- x - xo about a steady state Xo 

d x  I 
M ~ = F,(xo,/x) xl -= J(xo,/z) x I . (3) 

Questions of stability of nonlinear dynamical systems are 
extremely important, both from the theoretical and practical 
points of view. For the systems with small numbers of degrees 
of freedom, a significant progress has been made in develop- 
ment of computational methods that allow effective detection 
and analysis of typical bifurcations that affect stability [1]. 
However, for systems with large or infinite numbers of degrees 
of freedom, for instance, those that arise in hydrodynamics, 
most of the conventional methods, such as Routh-Hurwitz 
criteria or eigen-analysis, are not readily applicable because of 

Thus, the local stability of an equilibrium state is fully deter- 
mined by the following generalized eigenvalue problem involv- 
ing the mass matrix, M, and the Jacobian matrix, J(xo,/x), at 
that state, 

MAk~k = J(xo,/z)~zk, (4) 

where hk E ~ is an eigenvalue and gk E ~ N is the corresponding 
eigenvector. So, if all the eigenvalues have negative real parts, 
a small disturbance, 
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N 

x,(t) = ~ ea,'ak~k, (5) 
k-I  

about x0 will decay. If one of the eigenvalues A, has a positive 
real part, then all the disturbances along the eigenvectors ~k 
with k 4: c will decay, whereas they will grow along the critical 
eigenvector ~, approaching it asymptotically. Thus, critical val- 
ues of  IX, where Re(A,) = 0, mark thresholds of bifurcations 
in system ( 1 ). It should also be noted that since the eigenvalue 
problem (4) involves real matrices M and J, the eigenvalues 
of that problem are real or pairs of complex-conjugate. We will 
call a bifurcation simple if only one real or one complex- 
conjugate pair has zero real part at the point of  bifurcation. 

A saddle-node, or turning (limit) point bifurcation occurs 
when two branches of steady states meet with the continuous 
tangential direction in the absence of algebraic constraints. At 
least one of these branches represents a hyperbolic state and 
is unstable, since one of the real eigenvalues of  Eq. (4) also 
changes sign from one branch to another. So, a turning point 
can be characterized by the following set of  conditions: 

h , . = 0  

~. 4 :0  (6) 

dh, 
(IX,.) --> ~ or (h, = 0) = 0. 

Constant b 4 : 0  can be found empirically and determines 
criticality and stability of the bifurcating limit cycle. If b > 0, 
it is locally stable; otherwise, it is unstable and the Hopf  bifurca- 
tion is sub-critical. 

For a normal Hopf  bifurcation, an additional condition for 
the real part of  the critical eigenvalues is given by 

__d (Re{MIX,.)}) = d 4: O. 
dix 

(9) 

A pitchfork bifurcation can generically occur only if certain 
inherent symmetries of  the system become broken [1]; this 
gives rise to the two asymmetric solution branches that can be 
sub-critical or supercritical and stable or unstable, respectively. 
At a bifurcation point, a symmetric solution branch loses stabil- 
ity as a real eigenvalue crosses to a positive region in the 
spectrum of its linearized matrix. So, this bifurcation can be 
characterized by the following set of conditions: 

~4:o 

dA,. 
dix (Ix t~,) 4: o 

F~(x, IX,.) ~ range {F,(x, IX,.)} 

(10) 

Approaching the turning point while tracing the stable branch 
of equilibria will result in the abrupt loss of  stability of the 
steady state. Consequently, there will be transition to another 
steady state, periodic, quasiperiodic, or chaotic motion. 

A Hopf  bifurcation occurs when a pair of  the complex- 
conjugate eigenvalues A,, Ay of Eq. (4) crosses the imaginary 
axis in the complex plane. The steady state then loses its stability 
and gives rise to a limit cycle with frequency equal to the 
imaginary part of  the critical eigenvalues. The amplitude of the 
limit cycle increases from zero as square root of the bifurcation 
parameter (IX - ix,,). This cycle may be locally stable or unsta- 
ble, depending on whether the bifurcation is super-critical or 
sub-critical. The structure of the time periodic solution just 
after the bifurcation point IX = IX,. can be constructed according 
to the formula: 

x(t) - Xo + a ~k cos cot - a ~; sin wt; (7) 

here, co is the imaginary part of  the critical eigenvalue pair, gn 
and ~; are real and imaginary parts of  the complex eigenvector 
~:~. corresponding to the critical eigenvalue, a(ix) is the radius 
of  the limit cycle with characteristic square-root dependence 
on the bifurcation parameter (IX - Ixe), i.e., 

a(ix) = X / ( d / b ) ( i x  - IX,.). (8) 

Considering these properties of simple codimension-one bi- 
furcations, there are three strategies that are most commonly 
used to detect them in dynamical systems of large dimensions: 

• Time evolution approach, which treats the system as an 
initial value problem. With this method, the time evolution of 
the system is observed and certain conclusions are made from 
the change in the system behavior [2]. 

• Test function approach, which analyzes stability of the 
equilibrium state by evaluating a certain test function. It is 
normally used in conjunction with continuation of steady state 
solution branches as some control parameter is varied and is 
applied at each parameter step. This allows one to detect change 
in the stability of the equilibrium branch [3, 4]. 

• Direct approach, where the bifurcation problem is reduced 
to an appropriate algebraic system with the bifurcation point 
being an isolated solution of this system [3, 5, 6]. 

There are a number of studies advocating particular methods, 
based on the above strategies. However, in our opinion, the three 
strategies are complementary and can be used most effectively 
depending on the specific problems and objectives. Below, we 
outline the advantages and drawbacks of each approach as 
applied to the Hopf, saddle-node, and pitchfork bifurcation 
problems. For each technique, we will review how one can 
detect simple bifurcations with particular attention to the Hopf  
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bifurcation, since it is more complicated and computationally 
demanding to locate. 

2. TIME EVOLUTION APPROACH 

Since a steady state continues to exist after a Hopf bifurcation 
and just loses its stability, the transition can be detected in 
principle by integrating the system of equations in time, using 
steady state as the initial condition for different parameter val- 
ues. However, a small disturbance should be applied to the 
steady state, since if the initial conditions are chosen precisely 
enough, the system may very slowly evolve away from the 
unstable steady state. This could result in tremendously long 
integration time needed to reach a stable attractor. On the other 
hand, the disturbance should not be too large, because in the case 
of multi-stability, it may result in an attraction to a coexisting 
equilibrium or to another stable attractor, even if the steady 
state being tested is still stable. 

This approach allows relatively reliable detection of the Hopf 
bifurcations and is quite simple, however, it has serious draw- 
backs. First, it does not work close to the bifurcation point, 
where the time of attraction, both to the steady state and to the 
emerging limit cycle is very long and is virtually infinite at the 
point of the bifurcation. Therefore, the Hopf bifurcation point 
cannot be pinpointed directly by the time integration technique. 
Second, this method cannot locate a sub-critical Hopf bifurca- 
tion. Third, numerical time integration replaces continuous 
ODE/PDE with a discrete map whose time evolution is com- 
puted in reality and with the time step becoming an artificial 
bifurcation parameter of the map. It turns out that as the time 
step increases, solutions and their stability properties of the 
discrete map, may become quite different from the ones of the 
underlying continuous system. This makes the time evolution 
approach a particularly vulnerable tool. For a more comprehen- 
sive discussion of this subject, the reader is addressed to [38, 
39]. 

Yet, with a sufficiently small time step, it is still possible to 
make a rough prediction about the point of super-critical Hopf 
bifurcation by using the fact that close to that point the ampli- 
tude grows quadratically from zero with the bifurcation parame- 
ter. By precisely measuring the stationary oscillation amplitudes 
at any representative point in the domain for two or more 
different parameter values close to the onset of oscillations, 
one can estimate the point of bifurcation by extrapolation. 

One of the important advantages of the time-evolution tech- 
nique is that it is probably the most efficient way to distinguish 
between sub- and supercritical bifurcation, if the Hopf bifurca- 
tion point is already known. Indeed, if the characteristic square- 
root dependence of the amplitude of the limit cycle at a represen- 
tative point on the bifurcation parameter is not observed as we 
approach the Hopf point, and if the periodic oscillations are 
non-decaying above and below the threshold of the bifurcation, 
this indicates that the bifurcation is sub-critical. At a certain 
parameter value below the sub-critical Hopf bifurcation point, 

a saddle-node bifurcation of the periodic orbits usually occurs 
with stable and unstable limit cycles merging and disappearing. 
This results in an abrupt loss of finite amplitude oscillations 
below the critical parameter value. If one performs time integra- 
tion further with changing the control parameter backwards, so 
as to approach the Hopf point, the system should remain in the 
stable steady state, displaying, thus, a hysteresis between that 
state and a time-periodic motion, which is characteristic of sub- 
critical Hopf bifurcation. 

Applying time-integration continuation to the emerged limit 
cycle past the Hopf point, allows further studies of its nonlinear 
evolution, including possible period-doubling or secondary 
Hopf bifurcations including a transition to chaos. 

A pitchfork bifurcation can also be detected in a similar 
fashion by doing time integration of Eq. (1) in conjunction with 
a continuation of its equilibrium branch, starting from a slightly 
disturbed steady state. Past the bifurcation point, the solution 
will be attracted to one of the asymmetric steady states. This 
can be detected either by deviation from the initial equilibrium 
state or by the asymmetric structure of the final state. 

As the threshold of the bifurcation is approached, the time- 
evolution of the system will show increasing relaxation times. 
This, and the fact that right near the bifurcation point, asymmet- 
ric steady states are very close to the symmetric states, will 
cause uncertainties in the determination of the transition point. 

Time integration of the system (1) in case of saddle-node 
bifurcation is of limited use since, beyond the turning point, 
the equilibrium branch no longer exists, which can be easily 
detected by continuation of that branch. 

3. TEST FUNCTION APPROACH 

Among the test functions used to detect occurrence of simple 
codimension-one bifurcations, the most comprehensive is the 
test for eigenvalues. However, for more specific problems, de- 
terminant-based criteria or spectrum-slicing are applicable and 
are more efficient [4]. 

Unlike the time-evolution technique, the efficiency of the 
linear eigenvalue analysis is not dependent on the closeness to 
the bifurcation point. This method provides all the necessary 
information, both about the critical parameter value and about 
the structure of the critical disturbance and its natural frequency. 
The point of the bifurcation can be easily pinpointed using 
assumption (9), along with a secant iteration, 

Re(A(/x._~)) •/z. - Re(A(/x.)) •/z,,_~ 
(11) 

/x.+~ = Re(A(/x._0) - Re(A(p.,,)) 

A serious drawback of the eigen-analysis is that the most 
robust methods that can treat non-symmetric generalized eigen- 
value problems are based on the QZ algorithm and require 
computation of all the eigenvalues. This becomes computation- 
ally demanding and impractical as the size of the system in- 



C O M P U T A T I O N  OF SIMPLE BIFURCATIONS 249 

creases. Computing the full spectrum of the eigenvalues is 
redundant since only those with smallest real parts are of inter- 
est. Some iterative techniques are used in order to avoid comput- 
ing all the eigenvalues, concentrating only on the leading ones. 
Among those, Arnoldi 's method [7-9],  inverse iteration [10, 
11], and orthogonal iteration [4] methods are noted. 

Generally, much more efficient than the full spectrum ap- 
proach, the inverse iteration technique is based on an itera- 
tive formula 

( J (xo ,  t x )  - s M )  Ax k = (AkM - J(xo,/z)) X t 

A~* ~ _ (x k + Axk)i 
Ak [xk] i (12) 

x k + Ax k 
xk+ I --  

Ix ~ + Axq~' 

where A k and x ~ are the kth approximations of the eigenvalue 
and of  the corresponding eigenvector, respectively, and [x]i 
denotes the component of  a vector x that has the largest modulus 
[10]. This iterative formula provides convergence to an eigen- 
vector and an eigenvalue that is closest to the complex shift s 
with the rate of  convergence r determined from the quotient 

s - -  A* 

r :  S - - A * *  ' 
(13) 

where A* and A** are the nearest and the next nearest eigenvalue 
tO S. 

As it follows from Eq. (13), this method converges very 
poorly when there is another eigenvalue close to the critical 
one. Since shift s is complex, the size of  the matrix ( J  - s M )  

to be factorized at each iteration step is twice as large as matrix 
J. Another serious shortcoming of  the inverse iteration method 
is that it requires a prior knowledge about the structure of the 
eigenvalue spectrum. If this information is not available, then 
several values of  s need to be considered to assure that the 
computed eigenvalue is the leading one. 

Among other methods of  solving large eigenvalue problem 
(4) is a group of  subspace iteration methods, based on the 
orthogonal (Galerkin) projection on a subspace of a smaller 
dimension or the oblique projection on a Krylov subspace. 
These methods are extensions of  the symmetric Lanczos algo- 
rithm to nonsymmetric matrices. An orthogonal projection tech- 
nique onto a Krylov subspace, known as Arnoldi 's method [7, 
8], is one of  the most popular methods among this class. This 
method favors the outer part of  the spectrum, so it must be 
combined with shift-and-invert techniques to converge to an 
eigenvalue closest to the complex shift: Unfortunately, this 
eigenvalue is not necessarily the leading one. Arnoldi 's method 
with Schur-Wieland deflation can be used to overcome this 
difficulty by calculating several eigenvalues at a time [7]. How- 
ever, for this method to converge to the leading part of  the 

eigenvalue spectrum, one must use rather sophisticated combi- 
nations of accelerations and preconditioning, as done in [9]. 
Another problem encountered by authors when using Arnoldi's 
method with deflation was insufficient accuracy of the com- 
puted eigenvalues in comparison with results provided by QZ 
algorithm when the size of  the Krylov subspace was small in 
comparison with the size of  the matrix. 

A serious difficulty in applying eigenvalue-based methods 
to hydrodynamic problems is the singularity of mass matrix 
M. In incompressible confined flows, this singularity is due to 
the mass conservation equation which contains no time deriva- 
tives. Those algebraic equations contribute essentially infinite 
eigenvalues to the generalized eigenvalue problem. When 
applying most of the iterative algorithms, favoring the outer 
part of the spectrum, infinite eigenvalues may cause all sorts 
of  problems with convergence, as well as generate spurious 
modes and eigenvalues that can be mistaken for leading modes 
[9]. By using the penalty function approach, we have eliminated 
this problem for confined flows. This approach also decreased 
the size of the problem to be solved, as will be shown in 
Section 6. 

With penalty approach, a test for the sign of the determinant 
of the Jacobian matrix can be used as a test for saddle-node 
and pitchfork bifurcations. It is based on the fact that in the 
absence of singularity of the mass matrix M, the latter can be, 
in principle, inverted and then a generalized eigenvalue problem 
(4) can be reformulated as a regular eigenvalue problem for 
matrix J * M -~. If one of the generalized eigenvalues is zero, 
then det(J * M -t) = det(J) * det(M -~) = 0. Since M is nonsingu- 
lar, then it implies det(J) = 0. The test for the sign of  det(J) 
is computationally inexpensive, since it requires only one LU- 
decomposition of  J and often it comes free as a by-product of  
a Newton-based procedure to solve the base problem. 

As another example of a test function approach, a spectrum- 
slicing technique can be mentioned, which may be efficient for 
a certain class of  spectral methods which deal with a regular 
eigenvalue problem using an orthogonal set of basis functions 
[4]. By applying just one LU- decomposition to the symmetric 
part of  the Jacobian matrix ~ J  + jr), one can determine the 
inertia of  this matrix, i.e., number of  eigenvalues with positive, 
negative, and zero real parts. This enables detection and pin- 
pointing of Hopf and pitchfork bifurcations, but it does not 
provide the structure of  the emerging solutions. 

4. DIRECT METHODS 

Both time evolution and test-function strategies are used 
in conjunction with the continuation of  equilibrium branches 
techniques. This requires marching along such a branch as one 
parameter changes, applying test function or performing time 
integration, in order to determine the parameter value at which 
a bifurcation occurs. However, there is a group of direct meth- 
ods that allows finding both the structure of  leading disturbances 
as well as the critical parameter value as an isolated solution 
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of a suitably constructed algebraic system. The idea of this 
approach is to augment problem (4) for a specific eigenvalue 
with certain constraints in order to treat the critical parameter 
IX~ in Eq. (4) as a variable. Then, IX,., along with the leading 
eigenvector, can be found as an isolated solution of the enlarged 
system. In principle, this can be done for any given eigenvalue, 
as follows. Let us rewrite Eq. (4) in the equivalent form: 

(J(xo, IX) -- AkM)~k = O. (14) 

F(x0,  IX) = 0 

J(x0, IX)~R + coM~l = 0 

J(x0, IX)~! - ~ M ~ R  = 0 

l ,[gg,  gt] = l,.[~R, g,] = 0 

(19) 

for Hopf bifurcation. 
Equation (18) was first proposed by Moore and Spence [5], 

who proved that a quadratic turning point, at which 

If the eigenvalue A~ and the eigenvector ~k are complex, i.e., ~OJ(x0,/x)~: ~ 0, (20) 

A~ = ot + iw 
g :  #~ + i~, 

then Eq. (14) can be further decomposed to a pair of real equa- 
tions: 

(J(x0, IX) - cv./~)~R + oJM~t = 0 

( J (xo ,  IX) - o t M ) ~ t  - cOMeR = O, 

where ~ is a left nullvector of J(xo,  IX), is a regular solution 
(15) of that system. This system, with variations in normalization 

conditions, was later used in a number of studies [12-14]. 
Equation (18) was also used in [3] for continuation of steady- 
state branches through the turning point by using pseudo- 
arclength parametrization. 

If condition (20) is not satisfied, then higher order singulari- 
(16) ties may arise [15]. In particular, under the conditions 

where Xo can be determined from Eq. (2). Since a well-posed 
algebraic system is sought, the freedom in scaling the eigenvec- 
tors should be removed by applying two normalization condi- 
tions for ~:k and ~t, given by 

IIIF~ = 0 
(21) 

where ~" is a null-vector of the extended system 

I, [~R, ~:/] = 0 

1216, 6] = O, 
(17) 

where l~ and 12 are additional conditions, such as linear function- 
als. So, for given ot and co, Eqs. (16) and (17) along with Eq. 
(2) have the following unknowns: ~:R, ~t, x0, and IX, which add 
up to 3N + 1 totally, and we have 3N + 2 equations, so the 
problem is overdetermined. In this case, we can free a or oJ as 
an unknown. 

Even if we chose 1~ and 12 as linear functionals, the full 
system is nonlinear due to the nonlinearity in Eq. (2). So, 
generally, the full system might not have a solution. Similarly, 
one can define an augmented system for a given real eigenvalue. 

In the context of simple bifurcations, we are interested in 
the critical value of the parameter IX, where eigenvalue A is 
zero (turning point and pitchfork bifurcation) or pure complex 
(Hopf bifurcation). According to this, the following two systems 
can be written: 

J~" + Fj, = 0. (22) 

Werner and Spence [16] proved that a pitchfork bifurcation 
point is an isolated solution of Eq. (18). 

Equation (19) was first proposed by Jepson [6] and later 
studied by Griewank and Reddien [ 17]. Some variations of that 
system were used by Roose and Hlavarek [18], Jackson [19], 
and others. Methods based on equivalent criteria are reviewed 
and compared in [20]. 

Let us also note that conditions of types (14) and (16) are 
also suitable to detect other types of bifurcations, where an 
eigenvalue with a nonzero real part is sought. Examples of 
such situations are maps that can, for instance, be defined as 

x,+~ = f(x,,, IX), f :  D C X × °~---> X, (23) 

where x,, and x,+j are subsequent iterations of this map and can 
represent, for instance, the velocity field of Eq. (I) through the 
period of its oscillations. The stability of a fixed point, 

F(x0,  IX) = 0 

J(xo, Ix)~ = o 

1(~3 = 0 

for turning point and pitchfork bifurcation, and 

(18)  

x0 = f(x0, IX), (24) 

of this map is determined by the eigenvalues of its Jacobian 
j(x0, IX) -= f~(x0, IX) which are called Floquet multipliers of the 
map (23). A fixed point x0 is stable if and only if all the Floquet 
multipliers are within the unit circle in the complex plane [ 1 ]. 
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A saddle-node bifurcation of a pair of  stable and unstable fixed 
points occurs when one of  the multipliers becomes +1. This 
corresponds to a turning point of a periodic branch of the 
original flow Eq. (1). The analog of  a pitchfork bifurcation, 
period-doubling bifurcation occurs, when one of  the multipliers 
turns into - 1. A (secondary) Hopf bifurcation occurs when 

if-' +/~'- = 1, (25) 

a technique within the class of direct methods which, in many 
cases, is more efficient and practical than others. 

5. A NEW DIRECT TECHNIQUE 

A Newton method, Eq. (28), applied to Eq. (19), will provide 
a quadratic convergence for a good initial guess, which implies 
solving the following linear system at each iteration step 

where & and ~ are real and imaginary parts of  a leading Floquet 
multiplier. Then condition (14), together with the proper nor- 
malization condition and with Eq. (24), is easily applicable to 
the saddle-node or period-doubling bifurcation 

(j(x0,/z) - AI)~ = O, (26) 

where A is either + 1 or - l, respectively. For the Hopf bifurca- 
tion, we have to consider both real and imaginary parts of the 
critical multiplier being nonzero, and either augment Eq. (16) 
with the constraint (25) or to replace c~ + i,6' by cos(0) + i 
sin(0), as it has been implemented in the software package, 
AUTO, by Doedel [3]. 

Generally, the direct methods for computation of simple 
bifurcations require solution of an extended nonlinear alge- 
braic system, 

K(xo,  ~, A,/z~) --= K(X)  = 0, (27) 

which, in principle, can be done by using one of the Newton- 
type iterations 

Kx(X,,) AX. = - K ( x , )  

X,,+~ = X,, + AX, ,  
(28) 

where K x denotes the Jacobian of  vector K. The solution, X, 
includes a value of  the critical parameter, /xc, basis state, x0, 
leading eigenvalue, A E ~g, and corresponding eigenvector, 
s ¢ E q~". Such an approach can be superior to other methods, 
as it requires only a few matrix factorizations to complete 
the task. 

Unlike time integration and test function methods, which are 
based on the continuation in one parameter, direct methods are 
suitable to be used for continuations of  bifurcation curves in 
two or more parameters [3, 21, 22]. 

However, there are several things that limit the efficiency of  
the direct methods. First, as can be seen from Eqs. (18) and 
(19), the size of  the problem grows at least twice for a saddle- 
node and pitchfork bifurcation, and at least three times for a 
Hopf bifurcation. For a large system of ODEs that arise, for 
example, in hydrodynamics after spatial discretization of  the 
governing equations, this can be a serious limitation. The second 
issue is the requirement of  a good initial guess so that the 
Newton-type methods would converge. Below, we formulate 

J A x  + FuA/x  = - F 

J,~R Ax + J A~R + toM A~ 

+ J~,~R A/x + M~ A¢o = -J~H - oJM~t 

J ~ / A x  + J A ~ / -  toM A~R 

+ J ~  A/z - M~R AoJ 

OIL Oil 
o~ A~ + ~ A~, 

al, al~ 

= - J 6  + ¢oMgg 

= - - / , [gR ,  6 ]  

= --12[gR, gl]. 

(29) 

Here Eq. (29) is solved for corrections, Ax, AscR, A~:~, A/z, and 
Aw. Then the values of  the unknowns at the next step are 
updated as follows: x'  = x + Ax, etc. 

Here, we assumed mass matrix M is constant. This is justified 
for confined flows with parameter/z that does not affect the 
geometry of the mesh or basis projection functions. Otherwise, 
additional terms involving derivatives of  M with respect to x 
and parameter/z must be included. The Jacobian J ~- F~ in many 
cases can be computed directly; as with most discretization 
techniques, expressions for J can be derived analytically. In 
some cases, F~, can also be evaluated directly. However, deriva- 
tives of J (and if necessary, of M) in most cases have to be 
evaluated numerically at each iteration step [23]. 

It has been recognized from the beginning that inflating the 
size of  the original problem by more than three-fold can be 
disadvantageous as the problem's size increases. This is particu- 
larly true for hydrodynamic systems where many expansion 
terms or grid points are required for accuracy. First Griewank 
and Reddien [17], and later Roose and Hlava6ek [18] and 
Jackson [19] proposed two techniques to replace solving linear 
system (29) of  the size 3N + 2 by a two-stage solution. The 
last one is based on the following idea. 

From the first equation, Ax can be expressed in terms of A/z as 

Ax = a + A/x b (30) 

with 

a = - - J - I * F ,  b = - J - I * F ~ , .  (31) 

This decouples the rest of  the equations from the first, in a 
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sense that now the following problem can be solved autono- 
mously, 

J A~R + toM A 6 + (Jr~R + L~R b) A/x 

+ M~I Ato = -J~R - toM~/- L~Ra 

JA~R - 6oMA# + ( J r6  + L ~ b )  A/z - M~ Ato 

= - J g t  + wMgR - Jxgla 

Oll Oll A + = 

012 012 A 
+ = 

(32) 

and Ax is then evaluated using Eq. (30). This would require 
additional factorization of matrix J and two back-substitutions 
at each step to solve Eq. (31) for a and b, plus evaluating 
F r and J~. In most cases these derivatives are not available 
analytically, so they have to be taken numerically, along each 
vector, separately. For instance, 

Jx(x,/z) bs ¢ = lim[J(x + eb,/z)~ - J(x,/z)~]. (33) 
e~0 

A similar procedure has been proposed by Griewank and 
Reddien [17]. Instead of eliminating Ax by Eq. (30), they re- 
place Ax and A/z with another variable, ~-, according to the 
formula 

ship that makes x0 a function of the parameter /x. Then the 
Jacobian in Eq. (19) can be considered some nonlinear function 
of the parameter only, and then, Newton-Raphson equations 
for such a system can be written as 

J(tz) A~R + wM Agt + ]r~R A ~  + M~I Am = --JgR - oJMgl 

g(tx) A~t -- w M  A~R + ]~,gt Al~ - M~R Aw = -g~t  + oJM~R 

(36) Oil Oll Zx . + @, = 

OL OL ~ @ ~ +  = -~. @1 -h[~., ~,1. 

It is necessary to note that the derivative Jr in Eq. (36) is 
different from Jr in Eq. (32), since in our case it is 

• I t  - -  OJ(xo,/z._.... ) + OJ(xo, t.1,) dx 
O/x O ~  " d-~" (37) 

If Jr is used instead of -lr, then only linear convergence 
can be achieved. However, we never use formula (37) for 
computation of "It. Instead, we compute it numerically as 

,7 r = ! [ j ( ~  + e) _ j ( ~ ) ] ,  (38) 

where r and b can be found from the following algebraic sytems: 

b r / 

Although more complex, Griewank and Reddien's technique 
is applicable in the vicinity of a singular point (det J = 0), 
where omega is close to zero and system (31) becomes ill- 
conditioned. This is the case, for instance, in the vicinity of 
the cusp point on a Hopf bifurcation branch as it merges with 
a saddle-node fold. Slight generalization of the latter technique 
is described by Moore and Spence [5] for the case of a turning 
point and can be easily extrapolated for the Hopf bifurcation. 
However, it would require the same number of factorizations 
as the approach of Griewank and Reddien, with the increased 
number of back-substitutions and algebraic operations, and 
hence, more programming effort. 

We propose a technique based on decoupling of Eq. (19) 
instead of the Newton-Raphson equations (29). L e t  us treat 
the steady state equation, F(x0,/z) = 0, as a constraint relation- 

where e is small, compared to/z. 
So, in comparison with two-stage methods discussed above, 

at each step of the Newton-Raphson iteration (36), we avoid 
computing F r and derivatives (33) of the Jacobian Jx (and of 
the mass matrix M, if necessary) along the various directions 
and matrix-vector products involving those matrices, as well 
as solving Eq. (35). Instead, we have to provide the Jacobian 
J as a function of the parameter /x, which we obtain as a 
by-product of solving steady-state problem (2) for a given 
parameter value. 

Our method has another advantage over the methods 
proposed in [18, 19]. In the vicinity of a singular point, 
where det(J) ~ 0 (this can happen, for instance, at the 
origin of a Hopf bifurcation curve [22, 24]), Eq. (31) and, 
thus, Eq. (30) would not apply and the method will diverge. 
With our method, we can still solve a steady-state problem 
and construct a Jacobian. The latter assures applicability of 
this technique to decouple a steady-state equation from the 
rest of the augmented system close to the origin of Hopf 
bifurcation. The same is also true in the case of pitchfork 
and saddle-node bifurcations. 

Thus, at each step of the Newton-Raphson iteration, our 
method requires: 

1. solution of the steady state problem and construction of 
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the Jacobian J and its derivative J~,; this step consumes about 
3% of the total computational time; 

2. assembly of the Jacobian of the extended system and the 
vector of the residuals in Eq. (36), which requires approximately 
12% of the computational time; and 

3. solution of the linear system (36) for the corrections 
which we did using ESSL solver for sparse matrices, and this 
step took the remainder of the computation time. 

One of the important issues for any of Newton-Raphson 
type methods is finding the initial approximation. Roose and 
Hlava~ek [18] obtained starting values for basis state xo, /z, 
and co by tracing the branch of the steady states and using 
eigenvalues of the Jacobian matrix as a test function. Once 
satisfactory approximations for those quantities are found, they 
propose to compute an initial guess for the eigenvector using 
inverse iteration procedure. A similar technique is also used 
by Jackson [19]. This approach for finding the initial approxi- 
mation involves an iterative process in itself with the conver- 
gence rate depending on the distribution of the leading eigenval- 
ues. It therefore requires some initial information about the 
imaginary part of the critical eigenvalue in order to avoid doing 
a large number of complex shifts. In addition, this procedure 
requires solution of a size 2N linear system at each iteration 
step which can be a very expensive task in itself. The drawbacks 
of this technique have been discussed above in the test function 
approach, Section 3. 

We propose a simpler and more direct technique based on 
time integration. Instead of applying an eigenvalue test as a 
steady-state branch is continued, we apply a time-evolution 
test. Once an onset of oscillations is detected, we allow the 
solution to become stationary. Then, approximation to the criti- 
cal eigenfrequency w can be obtained by applying the fast 
Fourier transformation to the time series, or from measuring 
the period of the established oscillations directly. Since the 
oscillations close to the threshold of Hopf bifurcation can be 
described by Eq. (7), we obtain initial approximation for real 
~ and imaginary ~¢~ part of the complex leading eigenvector 
by using two vector-fields shifted by approximately one quarter 
of the period with the steady state field subtracted, 

s¢~ = x(O) - x0 

#~  = ~ - x0.  

(39) 

Both ~ and ~:7 are properly normalized. 
After initial guesses for ~R and ~1 are found, we specify our 

normalization conditions. Jepson [6] proved that system (19) 
has an isolated solution if normalization conditions satisfy: 

[ Ol, 01, Ol, at, \ 

I d e t / 0 l ~  012 012 Olz / 4:0 (40) 

for that solution and 

ll(O, O) + 12(0, O) 4: O. 

In [17, 19], normalization conditions were used of the form 

(c, ~:R) = 0, (e, ~:t) = 1, (41) 

where c is some constant vector and (-, .) denotes scalar prod- 
uct. Roose and Hlava~ek [ 18] used the following normalization: 

(c, 6)=0, (6,6)= 1. (42) 

Griewank and Reddien [l 7] proved that also the turning point 
can be a solution of system (19) with co = 0 and ~:R = 0 if 
normalization (41) is used, whereas normalization (42) does 
not allow the turning point to be a solution of Eq. (19), unless 
vector e is chosen to be orthogonal to the null-vector ~¢R- Both 
conditions (41) and (42) require a special construction of the 
vector c to satisfy (c, ~R) = 0. We chose to use a normalization 

(c, g:s) = 1, (c, ~:,) = p, (43) 

where c is our initial guess for ~:~ and p is initial product of 
(~:~, ~)'). Thus, any pair of vectors obtained by the time-evolu- 
tion technique and divided by the norm of ~ automatically 
satisfies Eq. (43). 

With this approach, one can achieve convergence close to 
quadratic if parameter e in formula (38) is sufficiently small. 
However, this would involve an additional solution of a steady 
state problem to construct J(/z + e), which is not an expensive 
step. It should be noted that with parameter/x converging, e 
can be replaced by the parameter difference at two consecutive 
iterations (/.zi - /zi-~), which can save additional computation 
of J(/x + e), but will somewhat further slow the convergence 
rate from quadratic to superlinear. Normally, three to four New- 
ton iterations are sufficient to pinpoint the bifurcation with 
reasonable accuracy. 

For systems where the mass matrix M can be reduced to 
unity I, it is possible to further decrease the size of the problem. 
Roose and Hlavarek [ 18] proposed an extended system of size 
2N + 2, which follows from the system (19) of Jepson [6], 
using the fact that for M = I, j2 has a double degenerate 
real eigenvalue co-' at the Hopf point with a two-dimensional 
manifold spanned by linearly independent real eigenvectors. 
Then, the extended system can be written as 

F ( x , / . ~ )  = 0 

[J2(x,/~) + o~ 2 I] ~: = 0 

(~, ~) = 1 

( c , ~ ) =  o .  

(44) 
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Here, ~ is some vector that belongs to span(~:R, ~:~). If our 
technique, or other techniques discussed above are applied, Eq. 
(44) can be solved in two stages involving only matrices of 
the size N and N + 2. This would greatly accelerate calculations 
since the cost of factorization grows exponentially with the 
matrix size. 

Because system (44) does not involve both eigenvectors 
corresponding to the degenerate eigenvalue co'-, the structure of 
the oscillating flow is undefined. Therefore, this system can be 
used only if the information about the critical parameter and 
eigenfrequency is required, like in the case of two-parameter 
continuation of a bifurcation curve. To overcome this shortcom- 
ing, the approach of [17] can be recommended to further parti- 
tion Eq. (36) with M = I into two sub-systems with the cost 
of treating the squared Jacobian matrix with the increased condi- 
tion number and performing additional algebraic operations. 
Unfortunately, both techniques are not applicable for M 4: I 
since J is non-symmetric and does not commute with M. 

It should also be noted that our technique of decoupling the 
steady-state equation would also apply to pitchfork and saddle- 
node bifurcations with the Jacobian J close to singular, since 
we do not invert J. However, it would require a technique 
other than the Newton method to solve for the basis state. An 
alternative approach can be used, first to pinpoint the critical 
parameter value by using the det(J) test in combination with 
some simple iterative method such as secant iterations. Once 
the critical parameter value is determined, then the structure 
of the null-vector ~: can be easily obtained by solving the 
linear system 

J(Xo/Zc) g = e, (45) 

where ,I is the Jacobian J with kth row replaced by the normal- 
ization condition for ~:, and e is parallel to the kth ort. Nullvector 

can be used, for instance, for branch switching at the bifurca- 
tion point [21]. 

In the next section, we apply our technique to a two-dimen- 
sional lid-driven cavity and show that the first transition point 
in that system is a Hopf bifurcation. 

6. STABILITY OF FLOW IN A TWO-DIMENSIONAL 
LID-DRIVEN CAVITY 

As a test problem, we considered a viscous flow in a two- 
dimensional lid-driven cavity (LDC) of height h and width d 
shown in Fig. 1 with the boundary conditions for the velocity 
field u at the walls given in Cartesian coordinates (x, y) by 

u(0, y) = u(d, y) = u(x, 0) = (0, 0), u(x, h) = (V, 0). (46) 

This problem is important because of fundamental and practi- 
cal reasons since LDC is a simple system that can be used to 
study stability properties of confined flows with closed stream- 
lines. It also serves as a model for many manufacturing devices, 

u = V  

U=0 U=0 

U = 0  

FIG. 1. Two-dimensional lid-driven cavity of aspect ratio A = h/d; direc- 
tion of the lid velocity is indicated by an arrow. 

such as short-dwell coaters and flexible blade coaters, used, for 
example, in the production of high-grade paper and photo- 
graphic films [25, 26]. Flow instabilities in such systems may 
have adverse effect on the quality of the manufactured products. 
Therefore, understanding the stability properties of the flow in 
an LDC not only increases our knowledge of fundamental issues 
but also provides the basis for analysis and improvement of the 
performance of a broad class of engineering and manufacturing 
systems that share common features with the simple LDC. 

The steady state flow of two-dimensional LDC was first 
studied in detail by Burggraf [27], who solved Navier-Stokes 
equation in a square cavity (d = h) for Reynolds numbers 
R = V d / v  from 0 to 400 (here, V, d, and u are the velocity of 
the lid, width of the cavity, and kinematic viscosity, respec- 
tively). Pan and Acrivos [28] studied the problem experimen- 
tally to examine the theorem of Prandl and Batchelor [29]. 
They found that for finite aspect ratios and at high Reynolds 
numbers (up to R = 3000), the LDC flow forms inviscid cores 
of uniform vorticity surrounded by thin shear layers at the 
boundaries, which is consistent with Prandl and Batchelor's 
theorem. However, they established that for the infinite aspect 
ratio, the flow does not become inviscid even if R ~ oo. Rele- 
vant experiments on stability of a three-dimensional LDC were 
performed by Koseff and Street [30] and, more recently, by 
Aidun et al. [25]. Their experiments concluded the presence 
of multistability of steady states as the Reynolds number in- 
creases as well as the recent studies by Benson and Aidun [31] 
reported the transition to a low-dimensional chaos in 3D LDC. 

Accurate numerical solutions of the steady basis flow for the 
square geometry of LDC and for Reynolds numbers up to 
10,000 have been obtained by several investigators, including 
Ghia etal .  [32] (using a multigrid method), Schreiber and Keller 
[33] (utilizing a continuation technique to trace the branch of 
the steady states), and more recently, by Thomson and Ferziger 
(up to R = 5000) [34]. However, the stability of the two- 
dimensional steady state flow has remained unexplored. For 
example, the critical Reynolds number, where the primary 
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FIG. 2. The disturbance streamlines plotted through eight equal phase increments during the oscillation period with time progressing clockwise. The base- 
state streamlines are shown in the center. 

steady state becomes unstable, has not been determined. Fur- 
thermore, it is not clear if the primary steady state destabilizes 
to a secondary steady state or if it is replaced by a time depen- 
dent flow. In this section, we examine the stability of  the two- 
dimensional LDC flow to two-dimensional disturbances. We 
use our computational approach, discussed in the previous sec- 
tion, to show that the primary branch of  steady states becomes 
unstable via the Hopf bifurcation as R increases, which can be 
either supercritical or subcritical, depending on the aspect ratio 
of  the cavity. This happens, for instance, in the case of  a square 
cavity at R = 7763 and gives rise to a time-periodic flow that 
may turn chaotic after a secondary Hopf bifurcation occurs. 

The dynamics of  the flow inside LDC can be described by 
Navier-Stokes and continuity equations. We consider isother- 
mal incompressible Newtonian flow, so only momentum and 
continuity equations given, respectively, as 

V. u = 0 (47) 

011 
- -  + u - V u  = - V p  + R -t V2u (48) 
Ot 

are considered. Here, the velocity vector u, pressure p, and 
time t are scaled with the lid velocity, V, pressure scale, pvV/ 
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TABLE I 

Square LDC. Results of Newton Iterations to Detect Hopf Point 

Mesh Number of Reynolds Frequency 
size iterations number R to AR 116611 IIAg, ll 

TABLE II 

Results of Eigenvalue Problem Solution 

Mesh Reynolds Interpolated Interpolated 
size number R Re(At) Im(h,) critical R critical to 

37 × 8200 1.9 10 -4 2.9268 
37 8180 -7.5 10 -4 2.9218 8196 2.9258 

Initial 8250.0  2 .9200 

37 1 8033.1 2 .8430 - 2 1 6 . 9  0.89 2.04 

× 2 8211.8 2 .9268 178.7 3 10 -~ 5 10-" 

37 3 8195.7 2 .9247 - 1 6 . 1  6 10 -3 6 10 -3 

4 8195.5 2 .9247 - 0 . 2  7 10 -~ 7 10 -5 

Initial 7650.0  2 .9200 

47 I 8118.7 2 .9077 468.7  1.36 1.24 

× 2 7574.6  2 .8930 - 5 4 4 . 1  1.8 10 -I 1.7 10 -j 

47 3 7614.3 2 .8956 39.7 2 10 -2 2 10-" 

4 7615.3 2 .8957 1.0 4 10 -4 5 10 -4 

57 Initial 7950.0  2 .8700 

× 1 7763.7 2.8635 - 1 8 6 . 3  5 10 -~ 6 10 -3 

57 2 7763.4  2 .8634 - 0 . 3  6 10 -4 6 10 -4 

d, and time scale d2[l. ,, respectively. The cavity width, d, is 
used as a length scale. So the Reynolds number, R, and the 
aspect ratio, A =-- h/d,  are the only parameters in Eqs. (47) and 
(48). The approximate solution of  these equations for vanishing 
R at the comers of  the cavity are available in closed form [28]. 

With a finite elements approach, the domain of  the flow is 
divided into small elements, each defined by a fixed number 
of  nodal points. Inside each element, the two components of  
the velocity field and pressure are approximated by 

ul.2(x, y, t) = (alp(x, y),  Ui.2(t)) 

p(x ,  y, t) = (~J(x, y),  P(t)),  
(49) 

where th and ~ are vectors of  interpolating functions of  the 
dimension equal to the number of  nodes in the elements; UL2 
and P are vectors of  nodal unknowns. After substituting Eq. 
(49) into the continuum equations (47), (48) and applying the 
Galerkin form of the method of  weighted residuals, the follow- 
ing matrix equations are obtained: 

GU = 0 

M dU + A(U) U - GTp = O. 
dt 

(50) 

Here, U - (UT, U~2) T, M is the mass matrix, and A(U) is the 
system matrix. 

For the reasons discussed in the section Test-Function Ap- 
proach, we prefer using penalty formulation of  the Navier-  
Stokes equations. With this approach, the continuity equation 
(47) is substituted by an equation of a slightly compressible 
form 

1 
p = - - V . u ,  (51) 

where e is a penalty parameter. Then pressure in the momentum 
equation (48) can be substituted for V. u, eliminating the conti- 
nuity equation (47). This approach is in a way equivalent to 
the divergence-free basis functions used in spectral methods. 
The divergence equation and a dependent variable, namely the 
pressure, are removed from the problem. The validity of  the 
penalty approach relies upon the result [35, 36] 

[[u - u,[[ + liP -P.I[  ~ Ce, (52) 

where u~ and p~ are solutions of  the penalty problem, and the 
constant C is dependent only on the dimension of  the Galerkin 
subspace. Thus, the solutions of  the penalty problem can be 
made arbitrarily close to the solution of  the original system 
(47), (48), with a proper choice of  the penalty parameter, e. 

In practice, the penalty parameter should be chosen suffi- 
ciently small to assure reasonable accuracy of  the solution (Eq. 
(52), yet large enough, in comparison with machine accuracy, 
to avoid round-off errors which corrupt matrices making them 
ill-conditioned. So, usually the penalty parameter is chosen 
according to the formula [36] 

e = c /D,  

TABLE III  

Direct Method Iterations for Other Aspect Ratios 

Mesh Number of Reynolds Frequency 
A s ize  iterations number R to AR IlAg.II IIAg, tl 

0.8 

1.5 

Initial 5 4 2 5 . 0  2.2000 
47 1 5213.0 2 .2167 -212.0 9 10 -z 9 10 -2 
× 2 5223.7 2.2170 10.7 7 10 -3 9 10 -3 
47 3 5225.0 2.2170 1.3 3 10 -3 3 10 -3 

Initial 6 5 0 0 . 0  2.7600 
65 1 6988.8 2.7780 488.8 1.00 1.00 
x 2 7223.0 2.7730 234.2 2 10 -~ 2 10-' 
47 3 7216.8 2.7727 -6.2 6 10 -3 7 10 -3 

4 7216.9 2.7727 0.I 5 10 -5 5 10 -5 
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FIG. 3. (a) Base-state, (b) real, and (c) imaginary parts of the critical 
eigenvector for LDC with A = 0.8. 

where c depends on the machine accuracy and can be assumed 
10 -6 for word lengths of 60-64 bits. D is a dominant contribu- 
tion in the system stiffness matrix A and can be chosen as 
max{v, vR}. 

With finite element technique, a penalty formulation is usu- 
ally applied to the discretized system (50) rather than to the 
original Eqs. (47) and (48) which requires assembly of an 
additional penalty matrix as discussed in [37]. So, the penalty 
formulation of the discrete problem can be, in general, presented 
by the following matrix equation: 

M - -  + B(U) U = 0. (53) 
dt 

Thus, the finite element spacial discretization with penalty ap- 
proach reduces the original problem to a system of ODEs of 
the order 2N, where N is the total number of nodes not including 
the boundary nodes. We treat the resulting ODE system as a 
dynamical problem with R and A as parameters. 

The mesh is graded according to the distribution of the veloc- 
ity gradients in the cavity. All the calculations use nine node 
quadrilateral elements with biquadratic interpolation functions. 

We used the continuation technique to trace the branch of 
equilibria originating from a Stokes solution at R = 0. By 
choosing a combined strategy for solving Eq. (2), applying 
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FIG. 5. Schematic bifurcation diagram for LDC of A = 1.5 reflecting 
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first the successive substitution method with a larger radius of 
convergence and, then, the Newton-Raphson method, we can 
make steps in parameter R values as large as 1000 and 500 for 
R > 4000. At each parameter step, we also do time-integration 
of Eq. (1), starting from the steady state solution. Once the 
onset of the oscillations is detected, we construct initial approxi- 
mation for the direct method to pinpoint the Hopf bifurcation 
and the structure of the critical disturbance. 

When applying our direct technique to Eq. (19), at each step 
of the Newton-Raphson iteration we also have to solve a steady 
state problem for an updated parameter value. This can be done 
efficiently by using Newton iterations again. We use a well- 
established standard finite element package (FIDAP, [36]) to 
construct the Jacobian and the mass matrix necessary to solve 
Eq. (36). It is worth noting that with finite-element discretiza- 
tion, both the Jacobian and the mass matrix have a banded 
structure that can be effectively utilized for reducing the costs 
of storage and computation; however, the matrix of system (36) 
does not have this advantage. To restore the banded structure 
of this matrix, the following renumbering of the equations in 
(36) should be performed: 1 --~ 1, N + 1 --~ 2, 
2 ---~ 3, N + 2 --'-'~ 4 ..... N - - - ~ 2 N -  1, 2N ----~ 2N. 

In the center of Fig. 2, the steady state for a square LDC is 
shown at the Hopf bifurcation point. We found that application 
of our method to system (19) results in almost quadratic conver- 
gence to the solution sought. Figure 2 also displays the structure 
of the critical disturbance for eight consecutive phases of the 
period of oscillation, obtained as a solution of Eq. (19) for a 
mesh of 57 × 57 nodal points chosen to represent the square 
domain of the LDC. The critical disturbance that gives rise to 
a time-periodic flow, consists of five primary pairs of counterro- 
tating vortices, convected around the main core with maximum 
intensity at the left wall. This structure of the critical distur- 
bance, computed directly, is identical to the corresponding 
structure, obtained from the time-integration of the transient 
equations. This proves the correctness and validity of our tech- 

nique. From the structure of the destabilizing disturbance, we 
conclude that the centrifugal instability of the primary vortex 
in the cavity is responsible for transition to time-periodic state. 

Table I provides data about convergence of the method at 
each step for three different sizes of the mesh: 37 > 37, 47 X 
47, and 57 × 57 nodal points. As one can see, our method shows 
almost quadratic convergence, where three to four Newton 
iterations are usually sufficient to satisfy the convergence cri- 
terion 

A,,R A, ,m lIAr=, /- + (54) 

where IIAII, denotes the norm of the Newton-Raphson correction 
at nth step and 3' is normally chosen to be less than 10 -2. 

As one may expect, the values of the parameters computed 
at the Hopf point differ for different sizes of the discretization 
mesh. The results, presented in Table I, allow predicting the 
exact point of Hopf bifurcation in a square cavity at Reynolds 
number R = 7763 _+ 2% with dimensionless frequency 
oJ = 2.86 - I%. 

The dependence of the size of the limit cycle on the Reynolds 
number for each of the above grids shows good agreement with 
the square root law of the periodic branch amplitude near a 
Hopf point given by Eq. (8). The critical values of Reynolds 
number, Re, extrapolated from the values of the amplitudes of 
the limit cycles at two points, close to the bifurcation point, 
by using formula (8), are Rc = 8171 for 37 × 37 mesh, R,. = 

7619 for 47 × 47 mesh, and Rc -- 7740 for 57 × 57 mesh which 
constitutes 0.3%, 0.05% and 0.3% errors with the correspondent 
results of the direct method, presented respectively in Table I. 
The latter comparison shows that the Hopf bifurcation in the 
square LDC is supercritical. 

The accuracy of the method can also be proved by direct 
solution of the eigenvalue problem for the coarse grid. Table 
II presents results of eigenvalue calculations for 37 × 37 grid 
and the results of interpolation obtained by secant formula using 
real parts of the leading eigenvalue as a test function. As can 
be seen from Table II, the predicted bifurcation threshold is 
within 0.01% of the one obtained by the direct method. The 
structure of the leading eigenvector, computed by eigenvalue 
solver, is also in agreement with Fig. 2. 

The solution of the eigenvalue problem also indicates that at 
the threshold of Hopf bifurcation, there are four other complex- 
conjugate pairs of eigenvalues with relatively small real parts 
and one small real eigenvalue. This may imply higher order 
bifurcations and interchange of leading modes as the second 
parameter of the system is varied. 

We have also studied the variation of the Hopf bifurcation 
point as the aspect ratio A = h / d  changes. The convergence 
results for our method with geometries of the cavity of aspect 
ratio 0.8 and 1.5 are presented in Table III. The results suggest 
that the square geometry of the cavity is most stable with 
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